Importance of Pavement Marking Retroreflectivity Standards

Paul Carlson, Ph.D., P.E. Research Engineer Texas A&M Transportation Institute Texas A&M University



TOLLING. MOVING SMARTER.

Research aspects of traffic control materials with emphasis on safety and visibility

ASTM Standards

o ASTM E1710-11 Dry Handheld Test Method
o ASTM E2177-11 Wet Recovery Handheld Test Method
o ASTM E2176-08 Wet Continuous Handheld Test Method
o ASTM E2832-12 Wet Continuous Handheld Test Method
o ASTM D7585-10 Handheld Sampling Protocol

o ASTM WK3833 Mobile pavement marking Work Item

TOLLING. MOVING SMARTER.

ASTM E1710-11

- Measurements of dry pavement marking retroreflectivity
- **o** Defines instrument geometry
- o Refers to D7585 for sampling plan
- o "surface of marking shall be clean and dry"
- o Recently added Precision Bias statement

TOLLING. MOVING SMARTER.

o Testing completed in Feb 2010

TOLLING. MOVING SMARTER.

E1710 P&B Table

Sample	Average of the Labs' Averages	R/mean
N	575.8	11 %
D	331.4	12 %
Ар	266.5	16 %
Ó	508.7	17 %
R	1310.8	18 %
At	302.7	22 %
K	1854.7	22 %
Q	1985.8	25 %
Н	584.6	26 %
F	519.8	28 %

TOLLING. MOVING SMARTER.

ASTM E2177-11

- Measurement of wet recovery (after rain)
- Currently includes option for dump or spray method
- **o** Recently added Precision Bias statement
- o Most commonly specified wet TM

TOLLING. MOVING SMARTER.

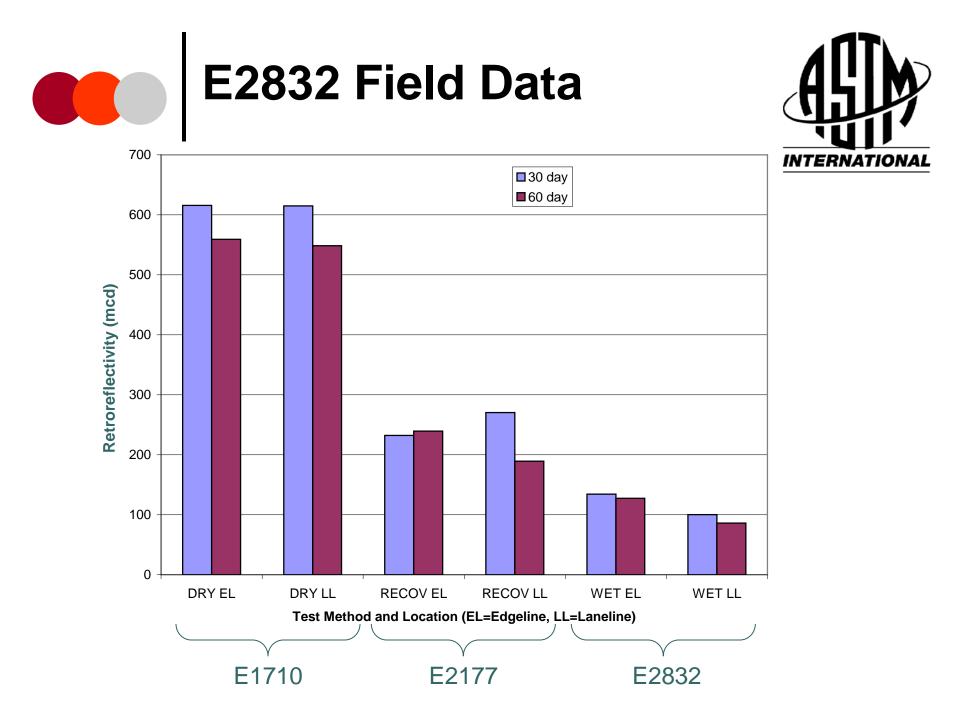
o Testing completed in Feb 2010

TOLLING. MOVING SMARTER.

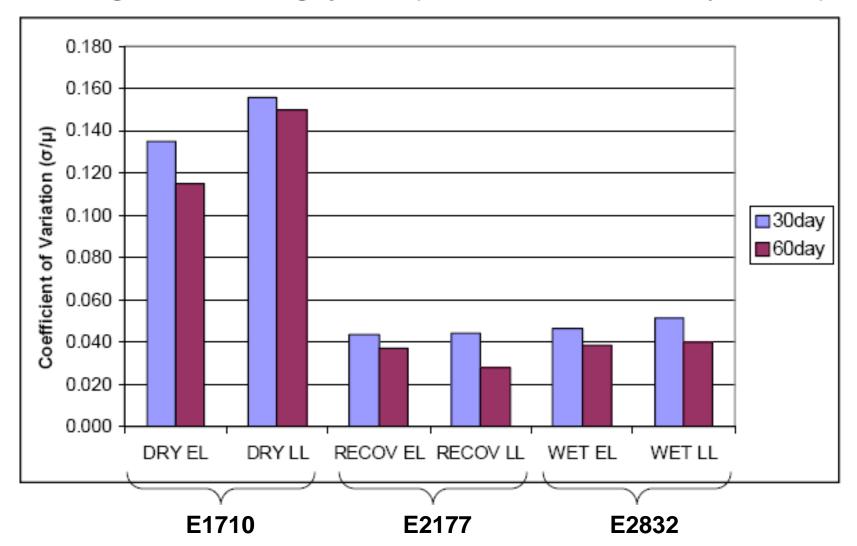
ASTM E2176-08

- Measurement of continuously wether a part of month to markings (during rain)
- Limited to markings with btils having index of refraction greater than 2 and subcurred markings having vertical strikes 3 mm
- o Controve sial set no rate > 9 iph)

TOLLING. MOVING SMARTER.


ASTM E2832-12 **NEW**

- o Measurement of continuously wetted pavement markings (during rain)
- Based on wetting rates of 2 inches per hour



TOLLING. MOVING SMARTER.

Average of 8 Pvmt Mrkg systems (4 binders with 2 different optics each)

ASTM D7585-10

- Sampling protocol for using handheld retroreflectometers
- 3 field techniques, including number of measurements needed
- Does not set initial or maintained minimum R_L levels
- o Released August 2010

TOLLING. MOVING SMARTER.

ASTM D7585-10

o Evaluation techniques

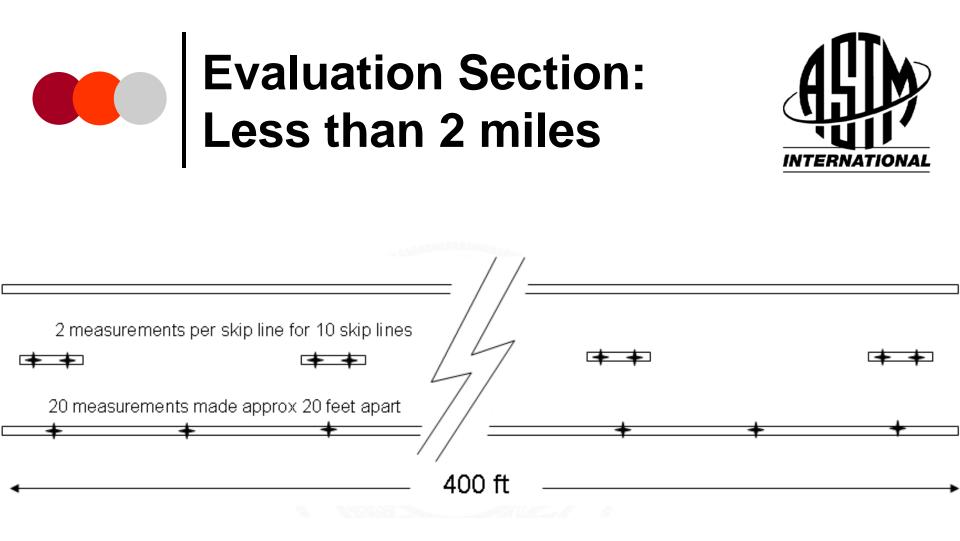
- Nighttime Visual Inspection
- Standard Evaluation Protocol
- Referee Evaluation Protocol

TOLLING. MOVING SMARTER.

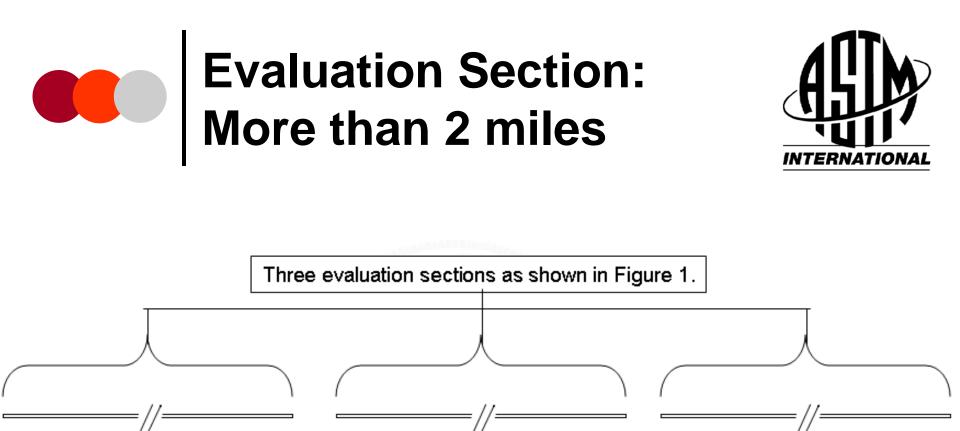
ASTM D7585-10 Nighttime Visual Inspection

- **o** New or in-service markings
- o Look for low brightness or high variability
 - If any, conduct daytime inspection using Standard Evaluation protocol
 - If none, record 4 random measurements

TOLLING. MOVING SMARTER.


ASTM D7585-10 Standard Evaluation Protocol

- o Intended for longitudinal markings
- o Evaluation sections: 400 ft (minimum)
- At least 16 readings per evaluation section
 - Based on statistical valid sample sizing



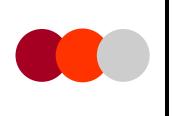
TOLLING. MOVING SMARTER.

TOLLING. MOVING SMARTER.

IBTTA

> 2 miles

TOLLING. MOVING SMARTER.

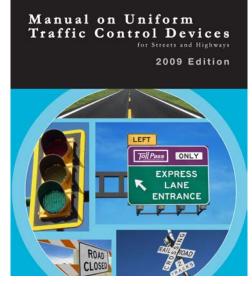

ASTM D7585-10 Referee Evaluation Protocol

- o Most rigorous protocol
- Minimum of 20 measurements per Evaluation Section
- o Includes all marking types such as arrows and gore markings

TOLLING. MOVING SMARTER.

ASTM WK3833

- o In-development
- Test method for mobile pavement marking retroreflectivity measurements



Why is this important?

- FHWA is working on minimum maintained pavement marking retroreflectivity levels for the MUTCD
- Once adopted, agencies will have to maintain pavement marking retroreflectivity

TOLLING. MOVING SMARTER.

Paven Retroi

Pavement Marking Retroreflectivity = Safety

• An Investigation of Longitudinal Pavement Marking Retroreflectivity and Safety

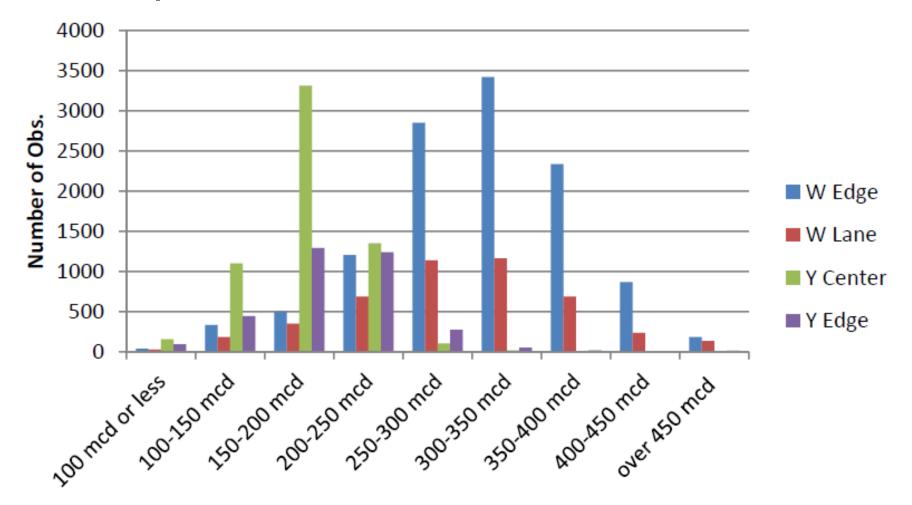
• TRB Annual Meeting, Paper Number 13-2512

o Objective

 Determine whether a correlation exists between pavement marking retroreflectivity and safety

Merge Michigan crash, roadway, and retroreflectivity databases

- Rural two-lane highways and freeways
- Only non- intersection/interchanges segments
- Only nighttime crashes
- Only non-winter data from 2002 to 2008
 - April to October (7 months per year)


Retroreflectivity Data

- o About 25,000 measurements
- Mobile measurements (1.25 million readings)
- o About 15% of the state system each year
- o Four line types
 - White edge line, white lane line
 - Yellow edge line, yellow center line
- Michigan restripes about 80-85% of their system each year

Distribution of Retro by Line Type

Database Development

o For each segment, 49 time periods

• 7 years, 7 months per year

o To populate retro for each segment

- Temporal imputation
 - Rules for degradation per month generated from subset of data
- Spatial imputation
 - Backward and forward imputation performed

Analyses Technique

Negative binomial regression with Generalized Estimating Equations (GEE)

o Analyses were conducted 4 ways:

- With all the retro data
- With retro data < 200 mcd
- With retro data < 150 mcd
- With retro data < 100 mcd

Par Nig

Partial Findings: Single Vehicle Nighttime Crashes on Freeways

o White edge lines

- NB coeff. -0.009 (statistically significant)
- Increase retro by 10 mcd \rightarrow 0.9% reduction
- Increase retro by 100 mcd \rightarrow 8.6% reduction

o Yellow edge lines

- NB coeff. -0.013 (statistically significant)
- Increase retro by 10 mcd \rightarrow 1.3% reduction
- Increase retro by 100 mcd \rightarrow 12.2% reduction

Suggested Actions

- Get ahead of FHWA
- Implement minimum pavement marking retro standards for long line markings
- Use warranty or performance specifications with ASTM test methods

Paul J. Carlson, Ph.D., P.E. **Research Engineer Texas A&M Transportation Institute College Station, Texas, USA** paul-carlson@tamu.edu 979-845-1728

http://tti.tamu.edu/visibility

