Intelligent Vehicle Systems

SwRI[®]

Southwest Research Institute

Moving at Lightning Speed: The Future of Transportation and Technology

Steven W. Dellenback, Ph.D. Executive Director R&D Intelligent Systems

Automated Vehicle Technology

- Basic question:
 - What is the PURPOSE of a driverless vehicle?
- Possible answers:
 - Ultimate solution to the driver distraction problem
 - Should reduce accidents (although until a significant penetration the overall effect is questionable)
 - Should enable a reduction in traffic fatalities
 - Make transportation systems much more efficient (more vehicles in the same space)
- Sustainability of the technology (at what functional level) consider driving levels model – expected duration of autonomy:
 - \circ 5 seconds
 - o 30 seconds to 1 minute
 - **> 1 hour**

NHTSA / SAE Driving Levels

Source: SAE

- Descriptive
- Minimum levels
- Compare to:

Germany
 Federal
 Highway
 Research
 Institute (BASt)
 NHTSA

SAE level	SAE name	SAE narrative definition	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)	BASt level	NHTSA level
Humai	luman driver monitors the driving environment							
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a	Driver only	o
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system	Human driver	Human driver	Some driving modes	Assisted	1
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes	Partially automated	2
Automated dr. dy Lystem ('system', nich. a still dr. d. a environment			<mark>/ing</mark> — a	Valla		D7AY		
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes	Highly automated	3
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes	Fully automated	
5	Full Automation	the full-time performance by an <i>automated driving</i> system of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes		3/4

Who is Developing Autonomous Vehicle Capabilities (list may incomplete because information is not openly shared)

- US OEMs:
 - GM •
 - Ford
 - Tesla
- European:
 - Mercedes
 - BMW •
 - Audi •
 - Volvo •
 - Renault •
 - Scania (trucks) •
 - Jaguar Landrover ۰
 - Deihl •
 - RUAG •
 - **Rheinmetall Defence**

- Japan:
- Nissan
- Honda
- Toyota
- Hino
- lsuzu
- **Tier 1 Suppliers:**
 - Bosch
 - Continental
 - Delphi

- US non-OEMs:
 - Lockheed Martin
 - Southwest Research Institute (SwRI)
 - Smaller Defense Contractors:
 - TORC, GDRS, ASI, etc.
 - University Research
 - CMU, Stanford. Virginia Tech •
 - California PATH, VTTI •
 - Google

Government (non DoD)

- US: •
 - Human Factors for Vehicle Highway Automation •
 - **USDOT** Automation Program •
- European Union:
 - CitiMobil and CyberCars
 - Safe Road Trains for the Environment (SARTE)
- Japanese Government Energy ITS Project

State of the Practice (commercial): Google

- Pros
 - Well funded
 - Previously only freeway, adding arterial capability

Cons

- Expensive sensor suite
- Must pre-drive route
- Requires high precision map database
- For the U.S. only 3,200 km of the
 6.4M kms of highway "mapped"

Source: Google

State of the Practice (military): AMAS (LM)

- Autonomous Mobility Appliqué System (AMAS)
- Portable Autonomy:
 - o A-kit (autonomy)
 - B-kit (vehicle interface)
 - o C-kit (payload)

State of the Practice (military): (mules and support tools)

- Squad Mission Support System (SSMS)
 - \circ Active sensor technology
 - Carry loads over difficult terrain

- Dismounted Solider Autonomy Tools (DSAT)
 - Passive and active sensor technology
 - Supports 3 unique platforms

State of the Practice (agricultural/mining): John Deere / Komatsu

Source: John Deere

- Deere
 - Agriculture
 - **o** Constrained environment

- Komatsu
 - Fixed route
 - Very dirty conditions

Switch the Focus

- Lots of press and widely spread articles about on-road projects....
- Domains other than passenger vehicles have experienced lots of success:
 - Agriculture
 - o Mining
 - o Military
- Common thread in these areas include:
 - Constrained environments
 - Can accept some level of "collateral damage" (with no legal implications)

What do the Experts (collectively) Say? Automated Vehicles Forecast: From AVS14 – July 2014

Q16: When do you expect to be able to trust a fully automated taxi to take your elementaryschool-age child or grandchild to their school (with no licensed driver onboard)?

Looking out to the Horizon: What is Next?,

- Constrained Environments:
 - **o** Military operations can accept collateral damage
 - Closed operations (such as mining, agriculture) have less unpredictability:
 - No teenage drivers
 - Limited obstacles
 - Very well known environment (that does not change much)
- Short-term (3 to 10 years) we should look for:
 - **o** Applications that provide a payback for the investment
 - Environments of which we have some control of

Possible Applications: Transit

- Dedicated lanes (would allow early deployment of fully automated)
- Lane keeping assistance
- Precision bus docking
- Platoons

Work Zone Safety: Automated Attenuator Truck

- Pilot Texas DOT Project
 Moving work convoys:
 - Linear spacing
 - Lateral offsets
 - Static: reposition with hand signals

Intelligent Vehicle Systems

ad Condition a

SwRI[®]

Southwest Research Institute

Thank You

Steve Dellenback sdellenback@swri.org +1.210.522.3914

