

Optimizing Enterprise Road Asset Infrastructure with Data Analytics

Bill Rapp

September 12, 2016

IBTTA TOLLING. MOVING SMARTER.

© 2016 AgileAssets Inc. All Rights Reserved

STTP DENVER 2016

Your Toll Infrastructure is Deteriorating While You Sit Here Listening to Me

- Relentless wear and tear
- Very significant bottom-line capital and expense costs
- Infrastructure deterioration can be modeled and predicted
- Moving toward preventive maintenance and away from worst-first

Toll Infrastructure Investment Growth

- More than \$14 billion in capital investment was made over three years by the top 40 U.S. toll facilities
- The number of trips taken by drivers on tolls roads increased 14% over the last four years – from 5 billion trips in 2011 to 5.7 billion in 2015 A lot of money goes into folling infrastructure
- 9% increase in overall toll road mileage within the U.S., from 5,431 miles in 2011 to over 5,932 miles as of 2013

Source: IBTTA & FHWA

Asset Management Regulations in Tolling

- U.S. legislation: Moving Ahead for Progress 21st Century (MAP-21) & Fixing America's Surface Transportation Act (FAST) allow selective tolling of Interstates
- Performance reporting
- Impact on toll infrastructure

.....

• International public infrastructure condition requirements

MAP-21 Implications for Asset Managers

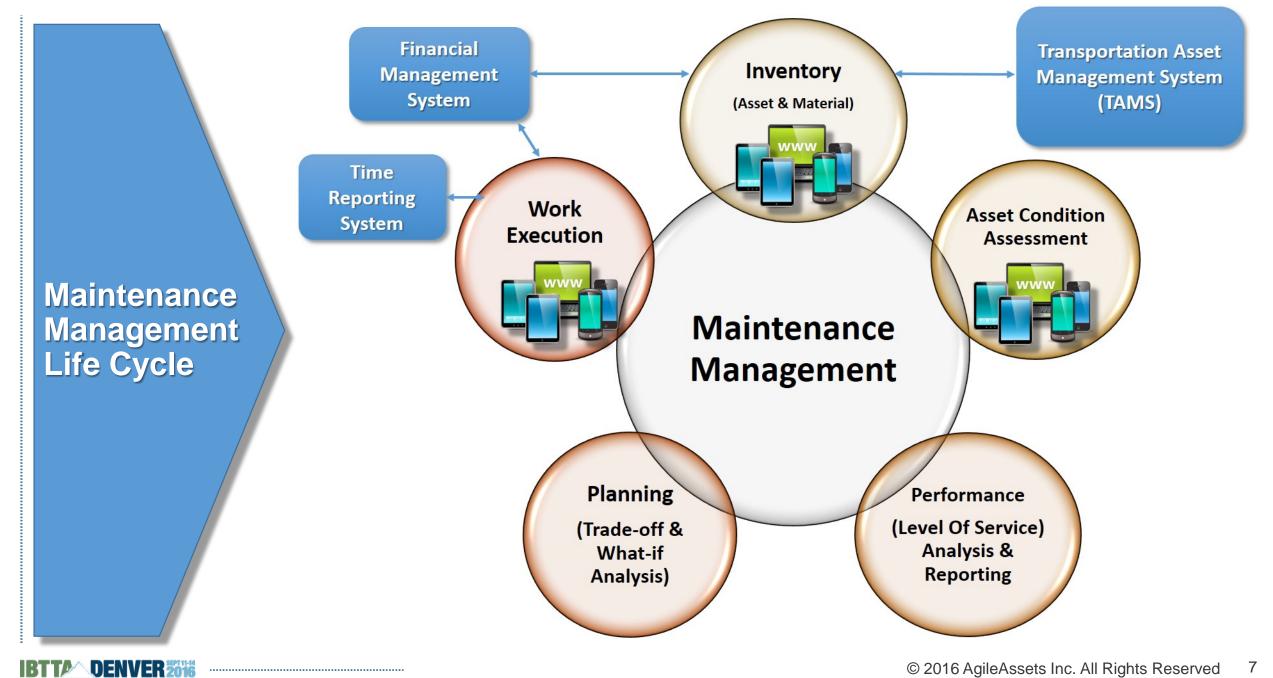
- Asset Management has taken Center Stage with MAP-21!
- Asset Management Systems are now eligible for federal funding
 - Most agencies are assessing existing systems & considering future needs
 - System integration is increasingly important
- · Safety Data Management Systems are now required
- AMS knowledge and experience will be in great demand within transportation agencies. Influential Role!
- NHPP program management and project selection will have critical dependencies on Asset Management Systems
- Required Performance Metrics will drive need for enhanced tools for analyzing data and investment decisions, e.g. ATOA

What is Transportation Asset Management (TAM)?

- Strategic and systematic life-cycle process
- Focus on business and engineering practices
- Better decision making and budget management

Source: AASHTO Sub Committee on Asset Management

TAM Addresses 5 Core Questions

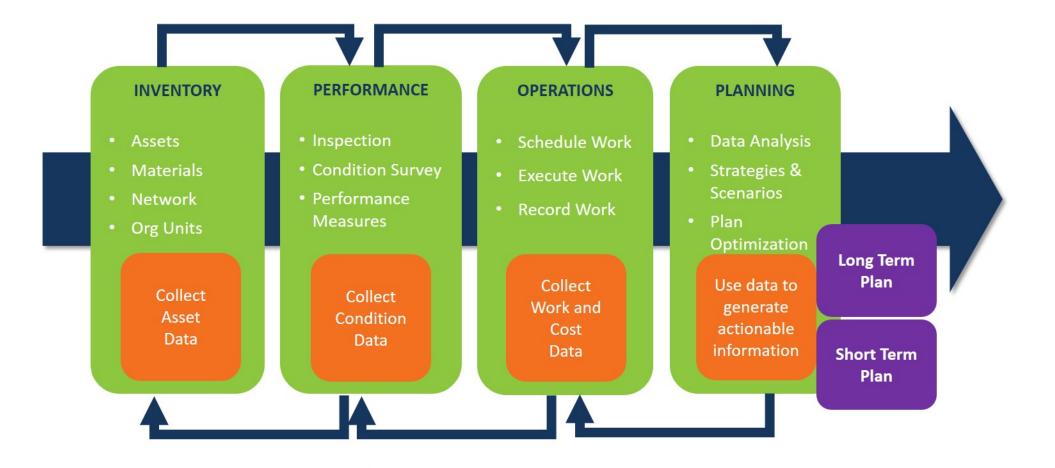


- 1. What is the current state of my assets?
- 2. What are my required levels of service and performance delivery?
- 3. Which assets are critical to sustained performance delivery?

4. What are my best investment strategies for operations, maintenance, replacements and improvement?

5. What is my best long-term funding strategy?

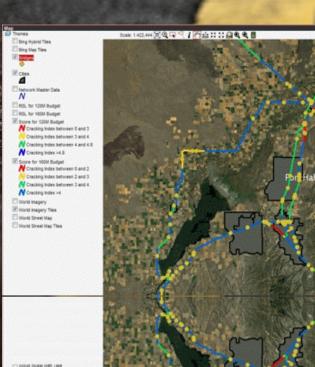
Source: Multi-sector Asset Management, Publication No. FHWA-HIF-09-022

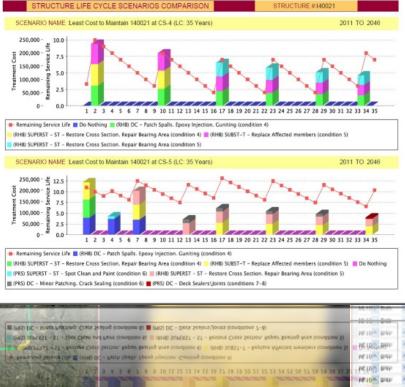


DENVER 2016

Iterative Asset Management Process

IBTT/


DENVER



© 2016 AgileAssets Inc. All Rights Reserved 8

Toll Systems are Linear Assets

Increase Tolling Profits Through Technology

							221105251212120203133		0.40.005		pleAcorts Manageme	rt Sycaero
Brid	ige	Roada	W.	Facilities	E	inbueu	Telecom R	esources Tr	ade Off	System		
	atabao	e Per	bertiate	e Anarysis	Neb	vark/Anal	iyala - Linear Nativor	sTools Report				
12	ings P	121210	N esses		1000	Storter						
13 p	ngez (1	S75rows	1									
_	_	_	_		-		Contraction of the second second				Bumber of Lates W	
4	M.	54:930		4542163	×	9071	\$5,206,082.0					~ 3030 · D
4	M	65.022		4542156		6.201						3030-0
A	*	71.307		4543513	14	1 (294	CULTURE CONTRACTOR					- 3030 · D
A	M	72.401	77.957	4543138	×	5.555	\$395,053.0	0 38.334	38	38.324	2,45	- 3030 - D
Al	M	77,957	84.305	4542280	*	6.903	\$958,221.0	0 42,2791	- 31	42,2781	2 A2	· 3030 · D
Al	*	84 925	85.559	4542155	×	0.553	50.0	0 65.2157	63	66,2157	4 A2	✓ 3030 · C
AI.	M	85,539	87.101	4543111	M	1.573	\$636,525.0	0 63.9016	33	\$3 9815	4 4	- DEDE
Al	M	87.161	94.404	4543061	*	7343	\$4,859,500.0	0 32.4954	33	32,4054	2 A	¥ 3030 · D
AI.	*	94.404	39.41 3	4542164	. M	5.079	\$1,348,535.0	0 25.7815	34	35,7815	2 A	🗸 3030 - D
Al	M	99.403	900.900	4543539	×	1.412	\$004,473.0	0 41.3013	35	46.3853	3 A C	- DEDE -
AL	*	100 930	105.942	4542459	×	5040	\$3,548,495.0	0 35.6343	35	36.5343	4 A	- 3030 · D
Al		105 942	111.634	4542287	×	5.683	\$1,876,753.0	0 29.6634	30	39 5824	2 AC	- DEDE -
AL	M	111.542	117.007	4542309	~	6.225	\$400,471.0	0 24.6549	33	34.8540	2 A	- 3030 - 0
=	100	112.002	118 333	HECODE		0.411	BXX 380.0	0 XI		C 311	11	2020 0
W.	*	0.00	111.985	1015360	-	# 334	2100141-10	0 24 6240	33	212240	5 V	A 3030 - D
W.	•	02140	111122	1015385		2,682	81 918 1220	0 20100291	2010	38 8824	3 10	A 2020 - 0
w	A.	006 001	102.043	1015108	-	204	20'040'402'0	0 3010340	38	3812343	4.95	A 2020 - D
vi	*	201412	100 800	1012020	-	1.1415	2004'451'0	42 3023	34	46 2692	3 10	A 3030 -0
vi		26.404	30 411	1215101	-	2018	21/2+6/230/0	0 291002		381618	5.90	A 3030 · D

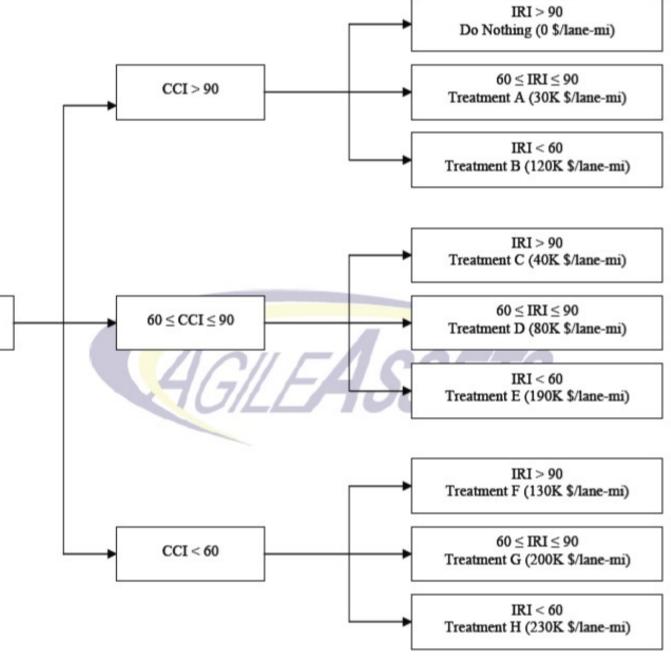
Transportation Asset Management Analytics Analysis Methodology

Ranking Methods

- Worst First
- Custom Prioritization
- Incremental Benefit

Optimization Methods

- Analyze Multiple Constraints
- Single and Combined Objectives
- Section Strategy Analysis


Multi-Constraint Optimization: Pavement Example

- Create an optimal work program using objectives and multiple constraints
- Analysis indicates a series of treatments
 - applied to individual assets over time
 - to minimize the treatment cost
 - or maximize the condition-based benefit subject to constraints

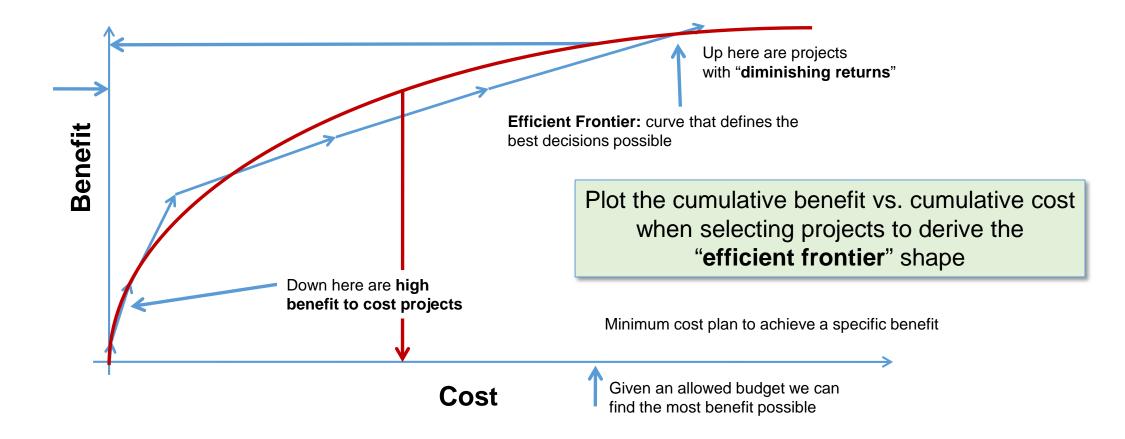
Treatment Selection Decision Tree (Pavement Example)

• Acronyms:

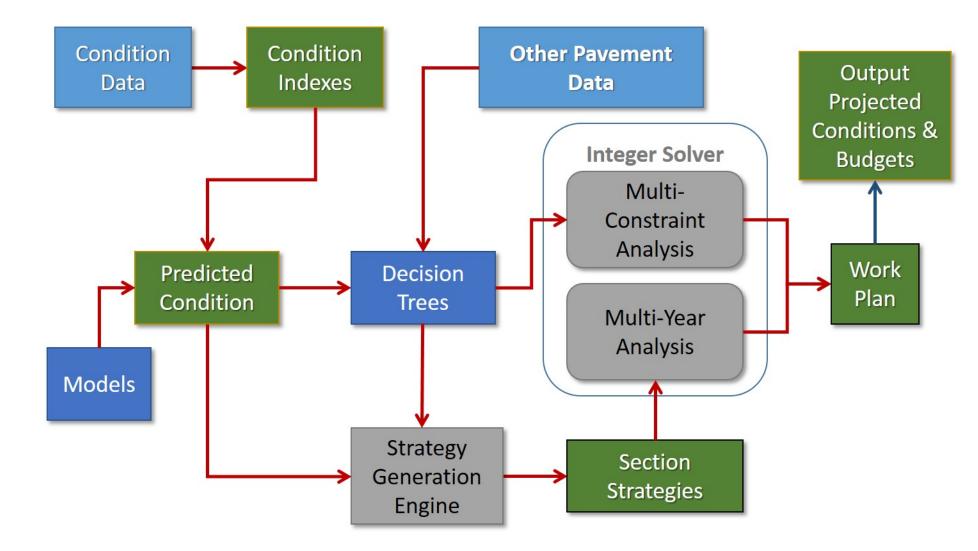
DENVER

- CCI: Critical Condition Index
- IRI: International Roughness Indicator Index

The Efficient Frontier for TAM


- Prioritize and optimize allocation of maintenance funds
- Models data to determine the maintenance level of service (LOS) that can be achieved
 - within a given budget or

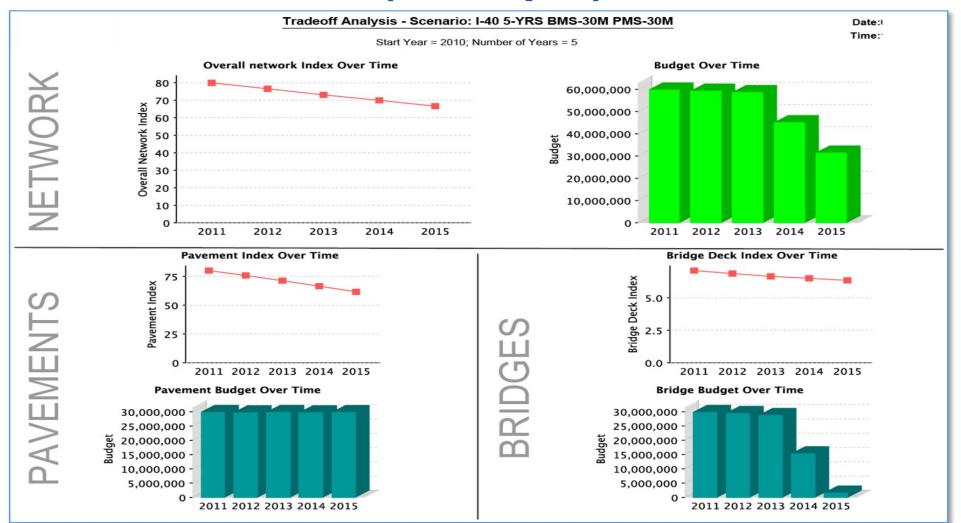
• the budget *required* to achieve a desired LOS



The Efficient Frontier

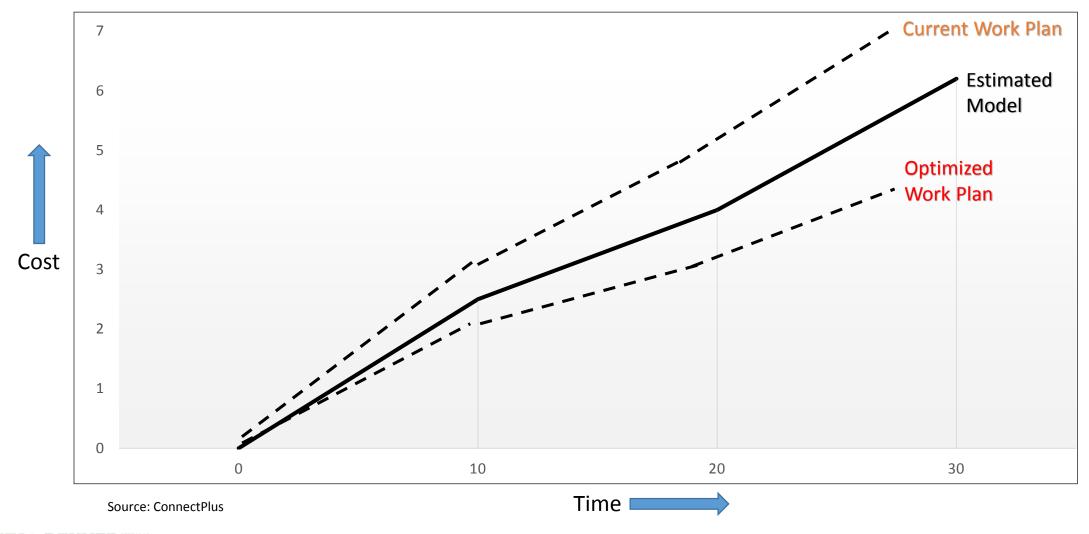
......

Optimization Analysis – Logic



Multi-Constraint Analysis Result (Example)

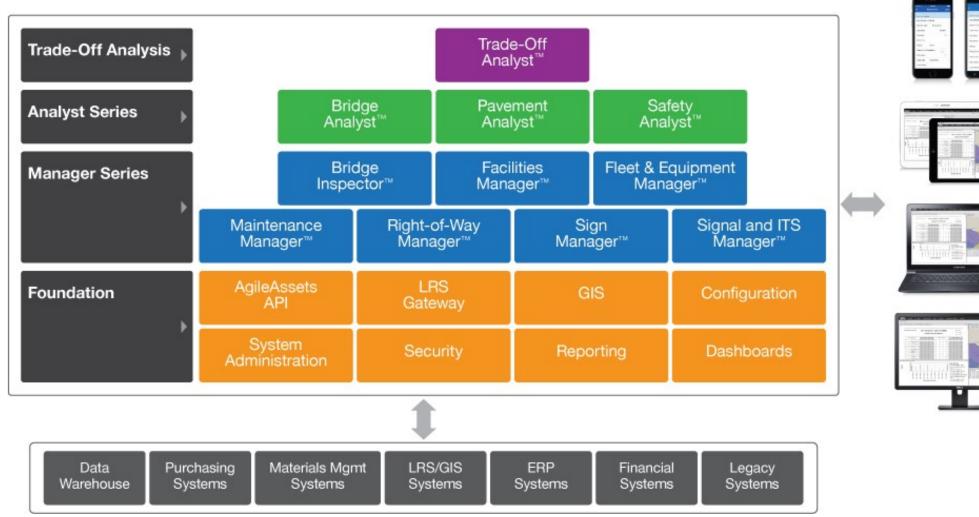
The **optimal solution** found by Multi-Constraint Analysis:


		Proj	ect on e	ach seo		Spending	Weighted average		
Year	1	2	3	4	5	6	Budget (\$)	(\$)	Performance index - Pl
1		CM					50,000	23,750	49.3
2				CM			100,000	82,728	50.0
3					RM		100,000	93,645	50.8
4		PM					150,000	3,282	47.1
5							150,000	0	43.1
	48.1								

Trade-off Analysis: Comparing Multiple Bridge & Pavement Scenarios (Example)

.....

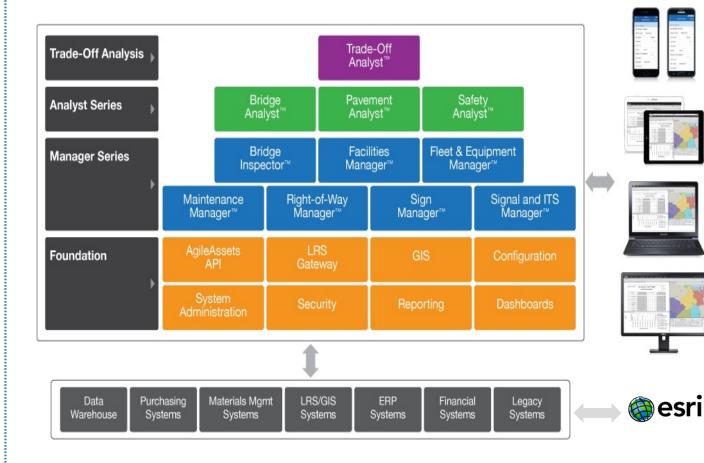
Visualize Optimization With Decision Support


IVER

Asset Management Dashboards Business Intelligence for Toll Infrastructure

IBTT DENVER 2016

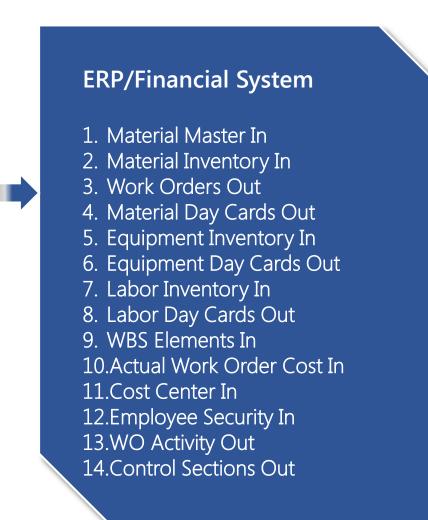
Integrated Transportation Asset Management (TAM) Application Suite (Example)



DENVER 2016

IBTT

© 2016 AgileAssets Inc. All Rights Reserved


TAM Systems - Integration Not Isolation

.....

IBTT/

DENVER

Save the Assets, Save the World

- Balance your infrastructure maintenance investment across all assets
- Acquiring TAM analytical tools to optimize needs with cost investments
- Build TAM dashboards and KPIs to monitor infrastructure asset performance
- Drive greater toll profitability and sustainability through technology

Thanks for listening

Bill Rapp Account Executive AgileAssets, Inc.

Brapp@AgileAssets.com

https://www.agileassets.com/resources/

www.agileassets.com