

Utilizing Unmanned Aircraft Systems (UAS) for Bridge Inspections

Presented by: Jennifer Zink, MnDOT Barritt Lovelace, Collins Engineers IBTTA 2016

Phase I Project Background

- MnDOT Bridge Office identified Unmanned Aircraft Systems (UAS) as a potential useful technology
- Additional Research Dollars Available
- Project was scoped, funded and completed in two months

Presentation Overview

- Project Scope
- FAA Rules
- Assessment of Current Practices
- Assessment of Phase I and Phase II UAS Technologies
- Project Planning
- Phase I Results
- Phase II Study
- Phase III
- Conclusions and Recommendations
- Public Response

Demonstration Project Scope

- Evaluate UAS safety and effectiveness as it applies to bridge inspection.
- Utilize UAS technology in the inspection of four bridges at various locations throughout Minnesota.
- Investigate UAS effectiveness in improving inspections and reducing inspection costs.
- UAS technologies were investigated to evaluate their capabilities as they relate to bridge inspection.
- Research report written for the MnDOT Research Services Office.

Flight Safety Restrictions

Current FAA Rules

- Licensed pilot is required to operate the UAS.
- UAS must be operated within line of sight.
- UAS must not be operated within 5 miles of an airport unless prior authorization from the airport operator *and* the airport air traffic control tower is received
- Cannot fly within 500 ft. of non-participants.
- Cannot launch or land within National Parks or National Wild and Scenic Rivers

Above and Beyond

- Notice to involved parties of operation
- Safety requirements

Assessment of Current Practices

Access Methods

- Aerial Work Platforms (AWP's)
- Rope Access and Structure Climbing
- Ladders

NBIS and MnDOT Requirements

- Hands On Inspection
- Non Hands on Inspection
- Measurements/Testing

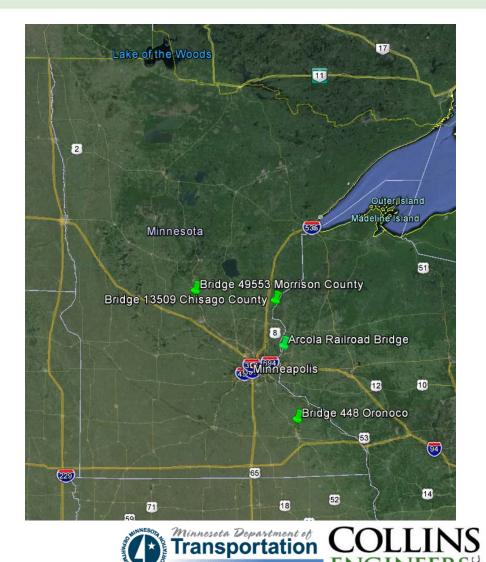
Assessment of UAS Technology

- Phase I Technology
 - Not capable of looking up
 - Unable to fly without GPS
 - Photo, Video and Thermal Imaging
- Phase II Technology
 - Inspection-specific UAS
 - Object Sensing
 - Capable of looking up
 - Fly without GPS, under bridge decks
 - Photo, Video and Thermal Imaging

Project Planning

Approvals

- Governors Office
- FAA
 - 333 Exemption
 - Certificate of Authorization
- MnDOT Aeronautics
- National Park Service
- CN Railway
- Bridge Owners Coordination



Project Planning

Bridge Selection Criteria

- Rural vs. Urban
- Variety of Bridge Sizes
- Variety of Bridge Types
- Bridge Location
- Bridge Owner
 Cooperation
- Limit Public Contact

Bridge 49553 – Morrison County Pedestrian Bridge

- Large Steel Truss
- Difficult to access with UBIV
- Great detail in images
- Pack rust visible
- Concrete deterioration visible

Table 5-3 Bridge 49553 Inspection Element Table

Bridge Element	Condition State	Previous Inspection Note	Discernable from UAV Video/Photo/IR Image
31 Timber Deck	8450 FT^2 CS 2	Constructed 13' wide x 4" thick x 650' treated timber deck and replaced 33 RR ties. Also placed 2" treated timber wear course.	Yes
407 Bituminous Approach	2 EA CS 1	Paved 2" bituminous in November, 2006. 8/28/13 - West approach failure repaired by MCHD. Good condition. Erosion on East approach repaired w/ quarry run riprap.	Yes
334 Metal Rail Coated	1299 FT CS 1	Placed 1,300' of coated chain link fence in November, 2006. 8/27/12 - Missing (1) end cap on East end.	Yes
117 Timber Stringer	3251 FT CS 1	Constructed 5- 4"x 8" treated timber stringers.	Yes, partially
131 Painted Stl Deck Truss	351 FT CS 2 299 FT CS 2	10/4/04 - All steel corroding & in need of rehab.	Yes
311 Expansion Bearing	1 EA CS 1 8 EA CS 2 1 EA CS 3	10/11/05 - Bearings show movement is possible. Significant corrosion is present, but bearings appear functional. 8/27/12 - Extensive crack in lower portion of bearing on South bearing on East abutment. 8/28/13 - Changed quantity to	Yes

Bridge Element Comparison

Bridge 49553 – Morrison County Orthographic Mapping

Bridge 49553 – Morrison County Orthographic Mapping

Arcola Railroad Bridge

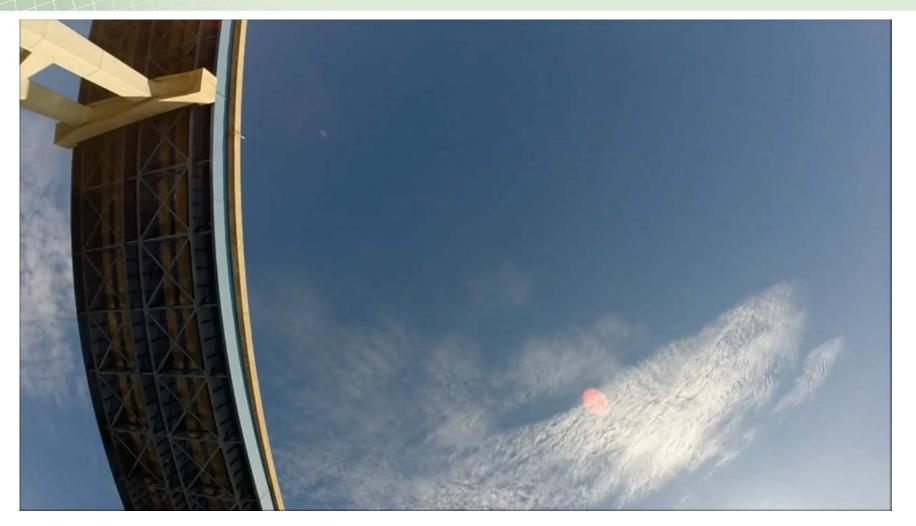
- Large Complex Bridge
- Normally inspected using rope access
- National Park Service Permission
- Difficult to access





Arcola Railroad Bridge

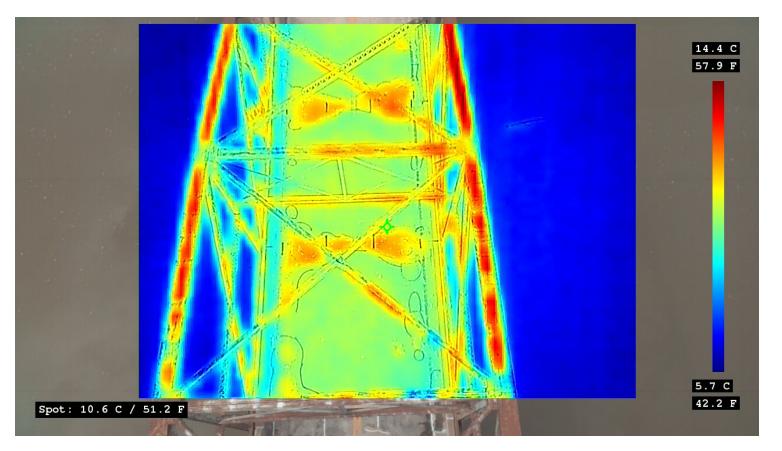
- Cost comparison with UBIVs, traffic control
- Explore inspection specific technology including the Sensfly eXom
- Compile a best practices document
- Incorporate into an actual inspection
- Use UAS in the planning of an inspection
- Use a secondary display for bridge inspector
- Deck surveys with zoom camera
- Culvert and Box Girder Inspection
- IR Deck Delamination Assessment at Dawn
- Paint Assessment
- Data on how many hours UAS vs. other methods

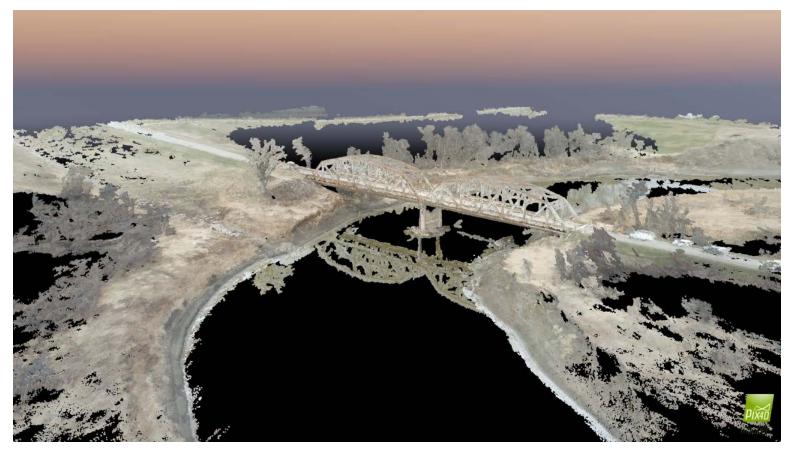


Blatnik Bridge Inspection

- Largest Bridge in Minnesota
- Crosses Duluth Harbor adjacent to Lake Superior
- Challenging wind and weather

Nielsville Bridge 5767


- Infrared Imaging
- Thermal Camera results were similar to high end Flir cameras
- Drone has the ability to map chain drag markings for quantities in CAD



Nielsville Bridge 5767

Nielsville Bridge 5767 3D Point Cloud

Phase III – Project Goals

- Statewide UAS Inspection Contract based on the MnDOT Bridge Access Inspection Policy list
- Overall Cost Effectiveness at a statewide level for both District and local agency bridges
- Inspection Quality and Safety Improvements closeup, 3D, and thermal imagery
- Identification of Sustainable Future Funding

Phase III – Schedule & Cost

- Task I Finalize Bridge Work Plans/Approvals
 - 9 months beginning July 2016
- Task II Field Work and Evaluation
 - 9 months April to December 2017
- Task III Documentation/Final Study Report
 - 6 months Ending June 2018
- **COST** \$100,000
 - Task I \$30,000
 - Task II \$50,000
 - Task III \$20,000

Conclusions

- UAS can be used in the field during bridge inspections safely.
- Image quality allows for the identification of defects.
- Tactile functions cannot be replicated using UAS.
- UASs can be cost effective.
- UASs can provide a very efficient way to collect infrared images
- Safety risks could be minimized with the use of UASs.
- UASs can be utilized to determine channel conditions.
- UASs can provide important pre-inspection information.
- "Off the shelf" UAS's have limited inspection capability.
- Current FAA rules are onerous.

Public Response

- Almost 100 news articles and stories
- Overwhelmingly positive
- Safety, reduced closures and cost efficiency valued by public

Questions/Contact Information

Jennifer L. Zink, P.E. Bridge Inspection Engineer MnDOT Bridge Office 3485 Hadley Avenue North Oakdale, MN 55128-3307 Phone: 651-366-4573 jennifer.zink@state.mn.us

Barritt Lovelace, P.E. 1599 Selby Avenue, Ste. 206 St. Paul, MN 55104 Phone: 651.646.8502 <u>blovelace@collinsengr.com</u> <u>www.collinsengr.com</u>

NEWPORT, RHODE ISLAND | MAY 15-17, 2016

Drones – More than Just an Irritating Buzz!

MODERATOR

Trey Baker, Texas A&M Transportation Institutue

PANEL

Barritt Lovelace, P.E., Collins Engineers, Inc.

Jennifer Zink, P.E., Minnesota Department of Transportation

Ian Ray and Jon Budreski, Media Wing LLC